Package: SCEnt (via r-universe)

June 25, 2024

Title Single Cell Entropy Analysis of Gene Heterogeneity in Cell Populations
Version 0.1.0
Description Analyse single cell RNA sequencing data using entropy to calculate heterogeneity and homogeneity of genes amongst the cell population. From the work of Michael J. Casey, Ruben J. Sanchez-Garcia and Ben D. MacArthur (2020) <doi:10.1101 2020.10.01.322255="">.</doi:10.1101>
License GPL (>= 3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
Imports entropy, tibble
Suggests rmarkdown, knitr, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
Repository https://hwarden162.r-universe.dev
RemoteUrl https://github.com/hwarden162/scent
RemoteRef HEAD
RemoteSha f99eb8ea89a9c652b59857b56b74b9442e6e232e
Contents
gene_counts
gene_het
normalise
rm_low_counts
rm_low_counts_tidy
scent_select
Index 1

gene_het

gene_counts

Find the Number of Times Each Gene Has Been Expressed

Description

Find the Number of Times Each Gene Has Been Expressed

Usage

```
gene_counts(expr, transpose = FALSE)
```

Arguments

expr A matrix of gene expressions with cells as rows and genes as columns

transpose A logical value indicating whether the matrix should be transposed before oper-

ations are carried out

Value

A vector of counts of expression for each gene

Examples

```
# Creating Data
gene1 <- c(0, 0, 0, 0, 1, 2, 3)
gene2 <- c(5, 5, 3, 2, 0, 0, 0)
gene3 <- c(2, 0, 2, 1, 3, 0, 1)
gene4 <- c(3, 3, 3, 3, 3, 3, 3)
gene5 <- c(0, 0, 0, 0, 5, 0, 0)
genes <- matrix(c(gene1, gene2, gene3, gene4, gene5), ncol = 5)
rownames(genes) <- paste0("cell", 1:7)
colnames(genes) <- paste0("gene", 1:5)
#Calculating Gene Counts
gene_counts(genes)</pre>
```

gene_het

Find the Heterogeneity of a Gene Within a Population

Description

Find the Heterogeneity of a Gene Within a Population

Usage

```
gene_het(expr, unit = "log2", normalise = TRUE, transpose = FALSE)
```

gene_hom 3

Arguments

expr	A vector or matrix of gene expressions. For the matrix, genes should be represented as rows and cells as columns.
unit	The units to be parsed to the entropy function.
normalise	A logical value representing whether the gene frequencies should be normalised into a distribution.
transpose	A logical value representing whether the matrix should be transposed before any calculations are performed.

Value

A vector of the information gained from the gene distribution compared to the uniform distribution. The higher the value more heterogeneous the cell is within the population.

Examples

```
# Creating Data
gene1 <- c(0, 0, 0, 0, 1, 2, 3)
gene2 <- c(5, 5, 3, 2, 0, 0, 0)
gene3 <- c(2, 0, 2, 1, 3, 0, 1)
gene4 <- c(3, 3, 3, 3, 3, 3)
gene5 <- c(0, 0, 0, 0, 5, 0, 0)
gene_counts <- matrix(c(gene1, gene2, gene3, gene4, gene5), ncol = 5)</pre>
rownames(gene_counts) <- paste0("cell", 1:7)</pre>
colnames(gene_counts) <- paste0("gene", 1:5)</pre>
# Calculating Heterogeneity For Each Gene
gene_het(gene1)
gene_het(gene2)
gene_het(gene3)
gene_het(gene4)
gene_het(gene5)
# Calculating Heterogeneity For a Matrix
gene_het(gene_counts)
```

gene_hom

Find the Homogeneity of a Gene Within a Population

Description

Find the Homogeneity of a Gene Within a Population

Usage

```
gene_hom(expr, unit = "log2", normalise = TRUE, transpose = FALSE)
```

4 normalise

Arguments

expr	A vector or matrix of gene expressions. For the matrix, genes should be represented as rows and cells as columns.
unit	The units to be parsed to the entropy function.
normalise	A logical value representing whether the gene frequencies should be normalised into a distribution.
transpose	A legical value representing whether the matrix should be transposed before any calculations are performed.

Value

A vector of the information contained in the distribution of each gene. The higher this is, the more homogeneous the gene is within the cell population.

Examples

```
# Creating Data
gene1 <- c(0, 0, 0, 0, 1, 2, 3)
gene2 <- c(5, 5, 3, 2, 0, 0, 0)
gene3 <- c(2, 0, 2, 1, 3, 0, 1)
gene4 <- c(3, 3, 3, 3, 3, 3, 3)
gene5 <- c(0, 0, 0, 0, 5, 0, 0)
gene_counts <- matrix(c(gene1, gene2, gene3, gene4, gene5), ncol = 5)</pre>
rownames(gene_counts) <- paste0("cell", 1:7)</pre>
colnames(gene_counts) <- paste0("gene", 1:5)</pre>
# Calculating Homogeneity For Each Gene
gene_hom(gene1)
gene_hom(gene2)
gene_hom(gene3)
gene_hom(gene4)
gene_hom(gene5)
# Calculating Homogeneity For a Matrix
gene_hom(gene_counts)
```

normalise

Normalise Counts into a Distribution

Description

A function that takes frequency count data and normalises it into a probability distribution. Only available internally within SCEnt.

Usage

```
normalise(dist)
```

rm_low_counts 5

Arguments

dist

A vector of a frequency distribution.

Value

A vector of a probability distribution relative to the frequencies.

rm_low_counts

Remove Lowly Expressed Genes From Expression Data

Description

Remove Lowly Expressed Genes From Expression Data

Usage

```
rm_low_counts(
  expr,
  count_threshold = NULL,
  perc_threshold = NULL,
  transpose = FALSE
)
```

Arguments

expr A matrix of gene expression with cells as rows and genes as columns

count_threshold

A threshold for the number of counts a gene must have to be included. Only one

threshold may be used at a time.

perc_threshold A threshold for what percentile the gene counts should be cut off at. Only one

threshold may be used at a time.

transpose A logical value indicating whether the expression matrix should be transposed

before any operations are carried out.

Value

A matrix of gene expressions with the low count genes, as specified by the user, removed.

Examples

```
# Creating Data
gene1 <- c(0, 0, 0, 0, 1, 2, 3)
gene2 <- c(5, 5, 3, 2, 0, 0, 0)
gene3 <- c(2, 0, 2, 1, 3, 0, 1)
gene4 <- c(3, 3, 3, 3, 3, 3, 3)
gene5 <- c(0, 0, 0, 0, 5, 0, 0)
gene_counts <- matrix(c(gene1, gene2, gene3, gene4, gene5), ncol = 5)
```

6 rm_low_counts_tidy

```
rownames(gene_counts) <- paste0("cell", 1:7)
colnames(gene_counts) <- paste0("gene", 1:5)

# Removing Low Count Genes
rm_low_counts(gene_counts, count_threshold = 7)
rm_low_counts(gene_counts, perc_threshold = 0.1)</pre>
```

rm_low_counts_tidy

Tidy Wrapper To Remove Lowly Expressed Genes From Expression Data

Description

Tidy Wrapper To Remove Lowly Expressed Genes From Expression Data

Usage

```
rm_low_counts_tidy(
  expr,
  count_threshold = NULL,
  perc_threshold = NULL,
  transpose = FALSE
)
```

Arguments

expr A tibble of gene expression with cells as rows and genes as columns

count_threshold

A threshold for the number of counts a gene must have to be included. Only one threshold may be used at a time.

timeshold may be used at a time.

perc_threshold A threshold for what percentile the gene counts should be cut off at. Only one

threshold may be used at a time.

transpose A logical value indicating whether the expression matrix should be transposed

before any operations are carried out.

Value

A tibble of gene expressions with the low count genes, as specified by the user, removed.

Examples

```
# Creating Data
library(tibble)
gene1 <- c(0, 0, 0, 0, 1, 2, 3)
gene2 <- c(5, 5, 3, 2, 0, 0, 0)
gene3 <- c(2, 0, 2, 1, 3, 0, 1)
gene4 <- c(3, 3, 3, 3, 3, 3, 3, 3)
gene5 <- c(0, 0, 0, 0, 5, 0, 0)
```

scent_select 7

```
gene_counts <- matrix(c(gene1, gene2, gene3, gene4, gene5), ncol = 5)
rownames(gene_counts) <- paste0("cell", 1:7)
colnames(gene_counts) <- paste0("gene", 1:5)
gene_counts <- as_tibble(gene_counts)

# Removing Low Count Genes
rm_low_counts_tidy(gene_counts, count_threshold = 7)
rm_low_counts_tidy(gene_counts, perc_threshold = 0.1)</pre>
```

scent_select

Feature Selection by Gene Heterogeneity

Description

Feature Selection by Gene Heterogeneity

Usage

```
scent_select(
  expr,
  bit_threshold = NULL,
  count_threshold = NULL,
  perc_threshold = NULL,
  unit = "log2",
  normalise = TRUE,
  transpose = FALSE
)
```

Arguments

expr A matrix of gene expression data. Cells should be represented as rows and genes

should be represented as columns.

bit_threshold The threshold for the amount of bits of information a gene must add to be se-

lected as a feature. Only one threshold can be used at a time.

count_threshold

A number represented how many of the most heterogeneous cells should be

selected. Only one threshold can be used at a time.

perc_threshold The percentile of the hetergeneity distribution above which a gene should be to

be selected as a feature.

unit The units to be used when calculating entropy.

normalise A logical value representing whether the gene counts should be normalised into

a probability distribution.

transpose A logical value representing whether the matrix should be transposed before

having any operations computed on it.

8 scent_select_tidy

Value

A matrix of gene expression values where genes with low heterogeneity have been removed.

Examples

```
# Creating Data
gene1 <- c(0, 0, 0, 0, 1, 2, 3)
gene2 <- c(5, 5, 3, 2, 0, 0, 0)
gene3 <- c(2, 0, 2, 1, 3, 0, 1)
gene4 <- c(3, 3, 3, 3, 3, 3, 3)
gene5 <- c(0, 0, 0, 0, 5, 0, 0)
gene_counts <- matrix(c(gene1, gene2, gene3, gene4, gene5), ncol = 5)
rownames(gene_counts) <- paste0("cell", 1:7)
colnames(gene_counts) <- paste0("gene", 1:5)

# Performing Feature Selection
scent_select(gene_counts, bit_threshold = 0.85)
scent_select(gene_counts, count_threshold = 2)
scent_select(gene_counts, perc_threshold = 0.25)
```

scent_select_tidy

A Tidy Wrapper for Feature Selection by Heterogeneity

Description

A Tidy Wrapper for Feature Selection by Heterogeneity

Usage

```
scent_select_tidy(
  expr,
  bit_threshold = NULL,
  count_threshold = NULL,
  perc_threshold = NULL,
  unit = "log2",
  normalise = TRUE,
  transpose = FALSE
)
```

Arguments

expr

A tibble of gene expression data. Cells should be represented as rows and genes should be represented as columns.

bit_threshold

The threshold for the amount of bits of information a gene must add to be selected as a feature. Only one threshold can be used at a time.

count_threshold

A number represented how many of the most heterogeneous cells should be selected. Only one threshold can be used at a time.

scent_select_tidy 9

perc_threshold The percentile of the hetergeneity distribution above which a gene should be to be selected as a feature.

Unit The units to be used when calculating entropy.

normalise A logical value representing whether the gene counts should be normalised into

a probability distribution.

transpose A logical value representing whether the matrix should be transposed before

having any operations computed on it.

Value

A tibble of gene expression values where genes with low heterogeneity have been removed.

Examples

```
# Creating Data
library(tibble)
gene1 <- c(0, 0, 0, 0, 1, 2, 3)
gene2 <- c(5, 5, 3, 2, 0, 0, 0)
gene3 <- c(2, 0, 2, 1, 3, 0, 1)
gene4 <- c(3, 3, 3, 3, 3, 3, 3)
gene5 <- c(0, 0, 0, 0, 5, 0, 0)
gene_counts <- matrix(c(gene1, gene2, gene3, gene4, gene5), ncol = 5)
rownames(gene_counts) <- paste0("cell", 1:7)
colnames(gene_counts) <- paste0("gene", 1:5)
gene_counts <- as_tibble(gene_counts)

# Performing Feature Selection
scent_select_tidy(gene_counts, bit_threshold = 0.85)
scent_select_tidy(gene_counts, count_threshold = 2)
scent_select_tidy(gene_counts, perc_threshold = 0.25)</pre>
```

Index

```
gene_counts, 2
gene_het, 2
gene_hom, 3

normalise, 4

rm_low_counts, 5
rm_low_counts_tidy, 6

scent_select, 7
scent_select_tidy, 8
```